
On the Computation of a Bivariate t-Distribution* 

By D. E. Amos and W. G. Bulgren 

Abstract. The cumulative bivariate t-distribution associated with random 
variables T1 = X1/(S/k)112, T2 = X2/(S/k)"12 is considered where X1, X2 are 
bivariate normal with correlation coefficient p and S is an independent x2 random 
variable with k degrees of freedom. Representations in terms of series and simple, 
one-dimensional quadratures are presented together with efficient computational 
procedures for the special functions used in numerical evaluation. U 

Preliminary Representations. The bivariate t-distribution derived below has 
been of interest to many authors [1], [3], [8], [15]. The work of Dunnett and Sobel [2] 
on the cumulative distribution in terms of incomplete beta functions stands out for 
computational convenience. These results, coupled with the more recent work of 
Gautschi [7] on efficient computational procedures for many of the special functions, 
makes these results even more accessible. The need for other computational formulae 
stems from possible losses of significance by subtraction in numerical evaluation. A 
simple quadrature derived below overcomes this difficulty and certain series 
representations offer computational advantages for large degrees of freedom. 

The usual procedure for deriving this t-distribution starts with the bivariate 
normal with correlation matrix 2 associated with the random variables X1, X2 and 
a X2-distribution with k degrees of freedom associated with an independent random 
variable A, 

_________l1 81+k/2e6-sf2 

n(xi, X2) = |12exp x x)/2], f (s) = 2k/2p (/2 

The distribution of the variables T1 = X1/(S/lk)12 and T2 = X2/(S/lk))2 is con- 
structed according to 

P(T1 ? t1, T2 _ t2) = I N(X1 < t() X2 X_ t2( ) Is) f(s)ds 

where N is the cumulative of the distribution n(x1, X2). 

An exchange of integrals and a scaling of the variables yields 

P(T t T2 < t2)2r(l+k/2) 

X ] ] ] exp [-u[1 + Q(v1, v2)/k]]uk/2dudvldv2. 

1 ft2 f1' dvldv2 

2(rl 1/21 + 1 Q /v2) 2 

319 

Received April 22, 1968. 
* This work was supported in part by the United States Atomic Energy Commission. 



320 D. E. AMOS AND W. G. BULGREN 

Here the integrand is the density function for T1 and T2 with 

p vi2~~~~- 2p1V -j- V22 and Q(V1, V2) P2 

where p,-1 < p < 1, is the correlation coefficient. The exchanges of integrals and 
sums are justified on the basis of absolute convergence. 

Quadrature Formulae. We start with (1) in the form 

1 f0 k t2/vfk tl k 

P = X]:ll/2r~ki2) Jou e j f exp [-uQ(xl, x2)]dxidx2du 
irjlJ2P11/ (k/2) -00-0 

and rotate the x1, X2 axes so that the quadratic form 

Q (X1X2) = xi2- 2pxlX2 + X22 
= (A-1A) 

1-p 

has only sums of squares. The eigenvalues of '-1 are X1,2 = 1/(1 i p) with eigen- 
vectors the columns of 

21/2 21/2 

L= 1 1). 
\21 /2 21 /2 

This 450 rotation of axes x = Lv reduces Q to Xlv12 + X2V22. A further change of 
scale v = Mw with 

M 1/2 

( 1/2 X\2 

gives Q = w12 + W22 under the transformation x = LMW'. The region of integration 
in the w , W2 plane is now the sector labeled Rw in Fig. 1. The determinant 
ILMI = I; 11/2 is the Jacobian of the transformation. 

X2 \ W2 

(tt2 1 

_ W 
R (.Y1,2 

x W 

FIGURE 1 
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The point (tl/k112, t2/kl/2) transforms into the point (7y1, 'Y2) where 

-yi = (t2 + ti)() 72 = (t2 - t _)2k 

01 = - tan- 
+ 

P)1/2 02 = r + tan + 
p)1/2 

=tan 172 Yi > O 

1 Y 
=ir+tan-'Y2 'Yi <O 

Here we take - r/2 < tan-1z < ir/2 with the usual convention sp = 7r/2 for yi = 0 
and 72 > 0, P = -7r/2 for 'y = 0 and 'Y2 < 0 and p =0 for =yi = 2= 0. The 
integration now proceeds in polar coordinates 

rx re2 rx 

p r (k/2) 1 1 0 

>< exp (-u[(,y1 + r cos 0)2 + (72 + r sin 0)2])drd0du 

(3) 1 2 k 2 f f 
-+k/2 

X exp (-(1 1 + 72 2)U) f exp (-v - 2(uv) K(0))dvdu 

after a change of variables r = (V/U)"12. The last integral is related to the parabolic 
cylinder function, D-2, and 

1 -2 +k/2 

(4) P= -2ir(k/2) J u e- (uD-2[(2u)lI2K(0)]dudO 

where 

H () = I + Y12 + 72 2 - K (0) 
2 

K(0) = Y1 COS 0 + 72 sin 0 = (,2 ? Y2) cos (0-2) 

Case 1. K(0) _ 0 or cos (0 - s) > 0. 
In this case the Laplace transform is readily available from tables (see formula 

(15) of the Appendix) giving 

1 J02 k k ?3 -C 0 
2-r (k + 1)(1 ? 2 ? Y2) 01 ( 2 2 1 

where c = (Qy12 + 'Y22)/(1 + y12 + Y22))1/2 and F is the Gauss hypergeometric func- 
tion. For numerical evaluation, the right side of the expression 

1-c2 cos2 (0- _ < =1 + (21 + 2 ) sin2 (0- 
+ 71 + 72 

is used to prevent losses of significance when c cos (0 - s) is close to 1. The series 
for the hypergeometric function is fairly rapidly convergent with all positive terms, 
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although the analytic continuation formula is valuable when sin (0 - s) is close to 1 
[4, p. 1081: 

(6) F(2 2; 3;1x)= (k?)F(1,- 2;+;x) 

2ir"/2r((k + 3)/2) VX(1 X)-(k+l)/2 x > 0. 
P (k/2) 

The parameters of this F function also satisfy a condition for quadratic transforma- 
tions of the argument [4, p. 64]. Exchanging the order of integration in (3) leads to 
formula (5) through D-k. There is an alternate form which corresponds with results 
of Case 2 which is obtained in the Appendix, namely 

Pi = 1 
2r(k + 1)(1 + 2 72) 

(7) Fk- 1 
31 

- k k +3 
31-c 

cos (0 - 
)) X 2 \2 '2 '2 '2 d X 1 [1 

+ c Cos(0 _ 2(k+/)d/2 

L2 
Case 2. K(0) < 0 or cos (0 - s) < 0. 
In this case the results for the Laplace transform (4) are presented in the 

Appendix. The application of (16) in (4) gives 

P2= 1 
27r(k + 1)(1 + 712 + 722)k/2 

(8) k-1 3-k k + 3 1 + c Icos (O -so)I' 
J2 2 2'2 ' 2 / 

1 = Ccos(o - O k+ )/2 

L2 
The series for the integrand in numerical evaluation is not useful for large k because 
of losses of significance due to small differences of large numbers, although the 
ultimate convergence rate is faster than in Case 1. For odd k in (7) and (8) the F 
function is a polynomial of degree max {0, (k - 3)/21 which is best computed by 
the analytic continuation formula 

F(k 3 - k k + 3 ) - 2 r 2 & 3)-kk 1 - ) 

+ Ek(l -X)(k+1)/2F(2, k; k + 3; 1 a- 

where 

Ek = O. k odd 

= 1, k even 

since most terms of the F on the right are positive. For even k, neither series on the 
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right terminates and the convergence is slow for x close to zero and k large. Thus, for 

k large and even and x near the middle of [0, 1], one can expect poor results in 

numerical computation. 
The defects of this case can be remedied however by considering 

_(l-,)_2r( __/2) z z2/4 1 +v 3 Z2\ 
D-. (z) = D-,(- z) + 2(1)2F(/)ze2'2' ! 

r(v/2)2 22 

in Eq. (4) where D is the confluent hypergeometric function. Then we have 

P2 P_ __ ___ __2_ _c cos (0- N)d 
r~~~~w2 ~ ~ e )1 _ C2 COS2 (n-O dv 

v/7rP(2 )(1 + 712 + 722)k/2 @1 [1 - C cos2 ( 
) 

- 

since 4(3/2, 3/2; x) = ex. 
In summary, the quadrature formulae may be expressed by (i) 

1 (~~~~~02 
P ~~~~~~~~~I(0)dO 

27r(k + 1)(1 + YJ2 + Y2 2k/2 1I 

where I(0) may have one of the forms, 

F k -1 3 -k k + 3 1 -c cos (0a (p) 

[1 + C cos (0 _ (p)-(k+1)/2 

or 

1(0) F(1 k k + 3;1 + (r12 + 72 ,)sin (O)) cos (0 - s) >-0 

2 2 ~~~+ ' 1 + Y2 /. 

F k-1 3-kk k+3 +cfcos(03 )I) 
\ 2 2 2 2 , 

~~~~~~~~cos (On - )< ? 
1 c ICos (0- (k) cs(0p)< 

and (ii) 

- F 1 - J Aa 

2 /r r(k ) (1 + y12 + 72 2k2 ?1 [1 - c cos2 (0 - )](k+)/2 dO 

where 

5(0a) =O0 if cos (0-n)? c = 12 2 2)12 

=1 if cos (0-)<O' <1( + 4i12 + 4Y222 
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This latter formula is recommended for numerical quadrature together with (6) for 
arguments of F close to 1. Details are given under Computational Considerations. 

Series Representations. The integral representation (3) provides a starting 
point for several series. We use first the formula [5, p. 7] 

ez Cos Go 
En 1-, n =0 

e OOS = e~j.(z) cos no, 

on the last integral of (3) where In is the modified Bessel function of the first kind. 
This produces the Laplace transform of In which we evaluate by means of [6, p. 1971 

h ePttl/2I (2,tl 2)dt 
- r((v++1/2) )1+P+1/2 

4( +V+ 2'2v+ , 

where D is the confluent hypergeometric function. Then, with A = ('yl2 + y22)112 we 
have, 

1 X (-1)n r(1+n/2) P I ~ -En 27r r(k/2) A- n ra ~+ n) n -+kn) E2 P(1?n) 2) 2 d 

X AnJ uf exp [-(1 + tYi2 + Y2 + 1, n + 1, A2u)dU 

02 
X cos n(O - )d 

1 

and with (13) and (14), 

1 (-1)anSn (0o102) 2(k2n) 

(10) 2ir ((k/2) n=0 (1 + 7Y + 72) r(n + 1) 

XFfj +1 n+k n+ 1C2) 

where 

=_( 2+ 72 
2 

\1+ 
2 

+ 'Y22 

Sn (012 02) = 02-01, n =0 

= 2 sin n(02 -01) 
Cos 

n(01 +02-2p) 
=2sin 2 cs 2 n0 

One obtains this same result if the integrals in (3) are exchanged. In the next section 
under numerical considerations, this formula is recommended together with methods 
for computing F(n/2 + 1, (n + k)/2, n + 1, c2). 
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A simple series expansion of exp [-2 (uv)"2 K(0)] in (3) leads to the represen- 
tation, 

(11) P = 1_ _ _ _ _ _ / A 
jCoe (0 - ~p)d0. 

21r F(k/2) n ao (1 + y12 + 72) / 1) le 

This integral in 0 can be expressed in terms of incomplete beta functions which are 
extensively tabulated. 

A more exotic formulation is obtained if the Sonine product [5, p. 98] 
00 

z e-zZ = 2'r1(v) E (-_1)n(n + v)Cn,(Y)I,+n (z) 
n-0 

is used in (3). Here again the factor in 0 is separated and we obtain using (13) and 
(14), 

r( +1) ( (-1) (n + k - 2)Gn(01,02) r(2j+ 1) P 
T) F, ~ (+ 712 + 2)k/2 ___ ir(k -1) (k -2 n.0 .o ( 

72+822 rn 
+ k-1 2 

2~~ ~ ~ 2 

where Gn(01, 02) is an integral of the Gegenbauer polynomial Cn(k-2)(cos(0-) 
J 2-9 

Gn(01, 02) = Cn(k-2) (cOs )d0 

But 

Cn'(cOs 0) -, mn!(-rn)! cos (n - 2m)0 

and 

n(k - 2)m(Ik - 2)n-m S (k2 
Gn(011x 02) =E ( )nm)nmSnum(011 02) 

G~(01 02)- m= m! (n - in)! n 

where 

Snm(Ol 02) = 2- 01 n = 2m 

2 sin (n-2m) (02- 01) cOS (n 2 ) (01 + 02- 2() 

n-2m , n 2m 

and (a)m = a(a + 1) (a + m-1). 
The case for p = 0, k = 1 can be integrated in closed form 

p 2= r {tn (+t12 + tan1 ti + tan2 t2 + } 



326 D. E. AMOS AND W. G. BULGREN 

while for k = 1 and any p, series (10) with the aid of (12) can be written as the 
solution of a potential problem in the unit circle 

= 1(21 (1- r2)dO 
27r a1-1 +r2 - 2r cos (0- o) 

-1 .2 2~ v21 
- tan 

l 
2 2 =+ {+ _ 

where --7r/2 ? tan-' t _ 7r/2 and 

2r sinp 1- r2 
U V2 

A(1 + r2+ 2r cos ss) A(1 + r + 2r cosp) 

r 
+ + 7 1 + 2 A =tan ((02-7r)/2) 1 + ~! 72 +72 

The fact that G1 - = - (02- r) has been used together with the conformal map 
of the unit circle into the upper half w-plane 

W= 
i (1-) IzI< 1 WA(1 + z)'Y 

with z = exp [i(02 - r)] -* w 1, z = exp [-i(02-i)] - W -1. 

Computational Considerations. For numerical evaluation, attention was directed 
toward (9) and (10), although (11) appears to be a possibility in view of Gautschi's 
[7] results. The quadrature in (9) (together with (6)) presented no problems in a 
Romberg integration routine, and series (10) reproduced the quadrature results 
(except for occasional discrepancies in the fifth digit) in comparable computer time 
for k > 2 with a maximum of 350 terms. Actually fewer terms (50 to 100) were 
required for the larger k values since the variance of the distribution decreases with 
k (approaching that of a normal distribution) giving smaller c values for a given 
percent point. For k = 1, the series required more than 400 terms in some cases for 
just three-decimal place agreement; while five-decimal place agreement between the 
quadrature and series was the norm for k _ 2 on relative and absolute error tests of 
5 X 10-5 respectively. The quadrature mesh size was halved while the upper index 
of the truncated series was incremented by 50 terms until the respective tests were 
met. 

Altogether, 1335 comparisons were made on parameter values 

p =-.9,-.5, 0,.5, .9 k = 1, 2, 5, 10, 25, 50 

and (th, t2) pairs on circles about the origin at 450 angular spacing beginning at 450 

and ending at 2250 since there is symmetry about the line t1 = t2. The increment in 
the radii varied with k to cover the most significant portion of each distribution. The 
computation in the (th, t2) plane was terminated for a given p and k on the condition 
P _ .99 on the 450 ray. The computations were done in single-precision arithmetic 
(approximately 10- digits) on a CDC 3600 computer. A relative error test of 
5 X 10-7 was used for the iw functions described below. 
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The computation of F(1, k/2, (k + 3)/2, x) for (9) is rapid with the series ex- 
pansions about 0 and 1 since x or 1 -x can always be taken less than 1/2. The 
continued fraction [4, p. 88] 

UX 

= 
(b + n-1)(c + n-2) 

(c + 2n-3)(c + 2n- 2)' 

n- -n(c - b + n -1) 
(c + 2n+-2)(c + 2n- 1)' 

F(1, b; c; x) = 1/R1 

also shows promise in numerical evaluation. Notice that the continued fraction may 
be used on the right side of (6) also. 

The computation of F((n + k)/2, n/2 + 1; n + 1; c2) produced some difficulties. 
For large k, the series representations about 0 and 1 do not converge rapidly enough 
in the middle of the interval to be useful. Furthermore, the parameters for even k 
put the F function in the exceptional (logarithmic) case and makes evaluation more 
difficult about 1. The following recursion methods proposed by Gautschi [7] were 
used with success. Note that the contiguous relation 

(c - a)F(a - 1, b; c; z) + (2a - c - az + bz)F(a, b; c; z) 
= a(l - z)F(a + 1, b; c; z) 

produces a recurrence relation in the parameter a. 
Case 1. k odd, k > 1. 
The contiguous relation above, under the parameterization 

a= (n+ 1)/2+m, b=n/2+ 1, c=n+ 1 

reduces to 

Y = 1 Fn + 1+-2m 1 + 4m + (1- 2m)z y ] m = 2 k-3 
Ym~i = 1 ~ n + 1+ Yin- + 

n+1+ M 

Ym= F + +M, n2m+ ; nn++ l;z mm= Om=,2 , 2 - 2 2 2~~02 - 

It is clear that the difference equation with the initial values 

yo = F((n+ 1)/2,n/2 + 1;n + 1;z), y, = F((n + 3)/2,n/2 + 1;n + 1;z) 

generates a "dominant" solution so that forward recurrence works. Now, yo and yi 
can be identified in terms of simple algebraic quantities 

n_ 2 (1 - n(1 - 

/2) 

YO = (1 - z)"2(1 + (1 - z) 2)= (n + 1)(1 - Z)31/2(1 + (1 - z)1/2)n 

n m 

by means of the relations 
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F(a, a+ 1;2a;z) = 
- 

1 + ( 
- 

Z)1/2 
1-2 

(12) (1a z)12 \ 2 

Fv 2~ + 1, + 1; n + 1;Z) = + dF(8 ;n z) 
\2~~21n +ldzdz2 2 ;~ 

For n = 0, and all k > 1 

F(1, k/2; 1; z)= (1 - Z)-k/2 

Case 2. k even, k > 2. 
The contiguous relation under the parameterization 

a = n/2 + m, b = n/2 + 1, c= n + 1 

gives 

Ym+i = 1 z[ n + 2 n- Ymym- + 2[(2m - 1)- (m - 1)z] YM] Z n + 9-m ~~n + 2m 

k2 m= 1,2, ' 2 

with 

Ym = F(n/2 + m,n/2 + 1,n + 1;z), m = 0,1, **,k/2 

yO = F(n/2,n/2 + 1;n + 1;z), yj = F(n/2 + 1,n/2 + 1;n + 1;z). 

Here again forward recursion works, but the computation of yo and yi is not as 
simple as in Case 1. The relations 

Y? = n(1 )-l+n/2 dz [(12-z)/ F(, 2 n; 

4 d {n n 
Y1 = - zF 2 n;z 

T12 rJi(v + 3/) ( Q" (Z) = ,2r+1 r ((v+ 3/2) (1 +1 )P+1 F( + I, v + 1; 2 + 2v; 1+ z) 11 + zi > 2 

provide the identification in terms of Legendre functions of the second kind: 

z) = 
1 

/2() (2) n/2n 
n /27( +1i 2 22 

Differentiation together with 

Q1'(x) = 1+ 12 [xQ,(x) - Q,+i(x)] 
prx 

produces 
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x = (2 -z)lz 

2nr(n + 1) 

YO = - [Ql+n,/2(X) + Qn/2(X)] 
1wl/2( 

n nZ/2 

2nr 
+ 

Yi = 1 z ) [Ql+n/2(X) - Qn/2(x)]. 

(2) 

Thus, for n odd, n > 1, we must generate the half-odd Legendre functions of the 
second kind starting with 

Q- 1/2 (X) - 1)'K( - >) 

where K is the complete elliptic integral of the first kind. The procedure of Gautschi 
[7] is very efficient since all half-odd functions can be produced to a specified relative 
error by means of the algorithm: 

_ 2v + 1 1 = bm 
2(v + 1) x + (X2 - 1)1/2 am + rm(v)I m = vv - 1, *, 1 

8 = 0, Sm1 = rmhi(*m + nm ) 

(v _ (v) (j) v 
Wm = riw I, m = 1, 2, **, M 

Xo + so("'r 
- 

-4mx b 2m-1 
am = 

2m + 1' bm 2m + 1 ' m = 1,2, v 

= (- )1/2) Xo = 1, Xim = 2 , m = 1, 2, *., v 

with 

Wm = Q-1 /2+m(X) = m wm , m 0 1, 2, M 

Here, at least two applications of the procedure are needed for different values of 
v: V2> >v > largest index of interest = M. The results for the indices of interest are 
tested for relative error and the procedure for V3 > V2 is reapplied if the two sets of 
numbers do not compare favorably. Here, 

Qm+ 1 /'() (v) 
rm = = lim rm 

Qm-1 /2 (X) v boo* 

and the asymptotic form for large v was used for Q,(x) to start the recursion with 
m = v. For n even, n > 2, the computational procedure is the same as for odd n 
except for the replacements 
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oW = Qo(x) = -In (Wm) W = Qm(W) = lim Wm 

2m +1 b- 
an= + 1 x, bm m+ 1 m = 1, 2,*. 

= 2(v + 1) 1 
(2v +3) x + (X 2 1/2 

and the fact that the s sequence need not be generated because of the explicit form 
for wo. As explained in the reference, the Q's are "minimal" solutions of a three-term 
recurrence relation 

Wm+ + amwm + bmw i = 0 m =1,2,= * . 

The algorithm for these solutions constitutes backward recurrence on the ratios 
followed by forward recurrence and normalization. In this analysis normalization 
(finding the constant of proportionality) is achieved by summing the series 

s = XOQ-112(X) + E XmQi/2+m(X) 
m=l 

in the first case and specifying Qo(x) in the second case. For n fixed and moderately 
large (50-100), Qn/2(x) decreases rapidly as x increases past 5. Better scaling results 
for both large and small x by modification of the algorithm to incorporate Z-n/2 as a 
multiplying factor of Q.,2(x). The new algorithm for odd and even n is 

wm = [(x + 1)/2]fl 1mQ_l(/2+m(X), W = [(x + 1)/2]mQm(x), m = 0, 1, 2, * 

P(v) - (x + 1) r,() M0hi _ -m 

v- 2 vM v am M + 

(x + 1) ,b_ (X + 1)2b am - 2 a m 4 ma 

Tm = ?h1wm1, m = 1, 2,**, M 

with normalization achieved by computing 

((xw + 1)2)I/2 and wo= Qo(x). 

Q112(x) is obtained from the original algorithm. The expressions for yo and y/ 
become 

2nr n?1)I 

Yo = 2I w l(X) + m(X)] 

2nr = i) [ + 

= Z( -zir 1/2rj)[( 21)m()-W xJ 
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for each sequence corresponding to even and odd n. 

Appendix. We wish to evaluate 

I = f e- tt-1+0/2D D, (i2 (kt) 1 '2)dt 

for z > k ? 0, 3 > 0. We start with 

Dw(z) - 2-'/2eZ2/4 r( )2 v 1 z2) 

+ z 2( 2-) 1 +v 3 Z2 

+ %/2 rv (2 '2; 2) 

Then, 

2 ~t2 )| e(z+k) tt1+0/2> 2 iktd 

fe t+ 2y 

2kt dt 

_2__ ( z+k) S- ( /2 ) 1 ; + v 3 4- '1"Q +) Ikt d 

? 2 ( 1 ~~ ) / 2 _ _ _ _ _ _ _ 

2 2 
_ 

for z > k > 0 since '1(a, c; x) r 1(c)! r (a) exxa-c for x -- o. The Laplace transform 

(13) f e Ptb ldI(a, c; yt)dt = b(s) F(a, b; c; ), IPI > IYI 

converts the right side to 

1= 2/2 ___ 2-P, 2 r(-r2)( V 2k ) 
(z + k)'/2 ___ 2 2' 2'z+k 

212 
(14) P(2z) = I22 

Z-1 
+ 1/2) 

we4) r (2z) ~~ P(z)P(z + 1/2) 

we have 
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1 = 21 w/2 1/2 P( 3) 1 
_ _ _ _ 

4 
_ 

A 

I=(z + k) 0/2 (V+ 0 + )L 1 + ^)r + 1) 2 2 2 iz +kJ 

r 
2 

r 
2_r 2 ( ) (2 ) 

4- 
)/2( 2-r 2 ) 

r 2 )r() 

XF 1 +v + 1 3. 2k). 
2 '2 '2' k 

For the positive sign, this is the right side of an analytic continuation formula for 
F(vu/2, /2, (v + / + 1)/2, (z - k)/(z + k)). Therefore, one gets the standard result 
found in most tables, 

r 
1 21 2 

1 /2 21-0-l'/2 
J e-ztDl+l2D-(2(kt)l 2)dt - ( + k)'/2 

(15) X r($) F(- I - ) 
r~+Sa 2' 2' 2 Iz + 
\ 2 / 

There is, however, a more coherent way of presenting both results in terms of 
associated Legendre functions, by means of the relation 

2xF( 2 + 1 + 2-7i 3; 2 

X~~ ~~ 2 2r 2 2 

if we let v= (/3- v -1)/2 and i = (1 - v- 3)/2. 
Then, 

I ir"22' 2(/3) (14-) x 

where 

()A 1 !2A 

We also have 
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so that 

I1= r1/22 (1-0)2r(1) (1 i2 

(z + k) '2 r 1 + v+A 
(16) ( 

_+_ _ +13 +V+ P__ X F 2 2 ' 2 A 2/ 

Notice that a quadratic transformation [4, p. 112] 

F(a, 1 -a; c; z) = (1 _ Z)C-1F(ca c + a 1 
- 

4z(1 z) 

Rez < 1/2, 14z(1 - z) < 1 

applies for the negative sign in the argument of F giving formula (15). On the other 
hand this quadratic transformation does not apply to the other sign since the argu- 
ment is greater than 1/2. 
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